Standard Practice for Statistical Assessment and Improvement of the Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material
1.1 This practice defines statistical methodology for assessing the expected agreement between two standard test methods that purport to measure the same property of a material, and deciding if a simple linear bias correction can further improve the expected agreement. It is intended for use with results collected from an interlaboratory study meeting the requirement of Practice D 6300 or equivalent (for example, ISO 4259). The interlaboratory study must be conducted on at least ten materials that span the intersecting scopes of the test methods, and results must be obtained from at least six laboratories using each method.
Note 1--Examples of standard test methods are those developed by voluntary consensus StandardDetails bodies such as ASTM, IP/BSI, DIN, AFNOR, CGSB.
1.2 The statistical methodology is based on the premise that a bias correction will not be needed. In the absence of strong statistical evidence that a bias correction would result in better agreement between the two methods, a bias correction is not made. If a bias correction is required, then the parsimony principle is followed whereby a simple correction is to be favored over a more complex one.
Note 2--Failure to adhere to the parsimony principle generally results in models that are over-fitted and do not perform well in practice.
1.3 The bias corrections of this practice are limited to a constant correction, proportional correction or a linear (proportional + constant) correction.
1.4 The bias-correction methods of this practice are method symmetric, in the sense that equivalent corrections are obtained regardless of which method is bias-corrected to match the other.
1.5 A methodology is presented for establishing the 95 % confidence limit (designated by this practice as the cross-method reproducibility) for the difference between two results where each result is obtained by a different operator using different apparatus and each applying one of the two methods X and Y on identical material, where one of the methods has been appropriately bias-corrected in accordance with this practice.
Note 3--Users are cautioned against applying the cross-method reproducibility as calculated from this practice to materials that are significantly different in composition from those actually studied, as the ability of this practice to detect and address sample-specific biases (see 6.8) is dependent on the materials selected for the interlaboratory study. When sample-specific biases are present, the types and ranges of samples may need to be expanded significantly from the minimum of ten as specified in this practice in order to obtain a more comprehensive and reliable 95 % confidence limits for cross method reproducibility that adequately cover the range of sample specific biases for different types of materials.1.6 This practice is intended for test methods which measure quantitative (numerical) properties of petroleum or petroleum products.
Currently Viewing
Expand Your Knowledge and Unlock Your Learning Potential - Your One-Stop Source for Information!
© Copyright 2024 BSB Edge Private Limited.