Standard Practice for Shearography of Polymer Matrix Composites and Sandwich Core Materials in Aerospace Applications
1.1 This practice describes procedures for shearography of polymer matrix composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. The composite materials under consideration typically contain continuous high modulus (greater than 20 GPa (3 × 106 psi)) fibers, but may also contain discontinuous fiber, fabric, or particulate reinforcement.
1.2 This practice describes established shearography procedures that are currently used by industry and federal agencies that have demonstrated utility in quality assurance of polymer matrix composites and sandwich core materials during product process design and optimization, manufacturing process control, after manufacture inspection, and in service inspection.
1.3 This practice has utility for testing of polymer matrix composites and sandwich core materials containing but not limited to bismaleimide, epoxy, phenolic, poly(amideimide), polybenzimidazole, polyester (thermosetting and thermoplas- tic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, cross-ply and angle-ply laminates; as well as honeycomb and foam core sandwich materials and structures.
1.4 This practice does not specify accept-reject criteria and is not intended to be used as a means for approving polymer matrix composites or sandwich core materials for service.
1.5 To ensure proper use of the referenced StandardDetails, there are recognized nondestructive testing (NDT) specialists that are certified according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any composite component design, quality assurance, in-service maintenance, or damage examination activity.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International StandardDetails, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Currently Viewing
Expand Your Knowledge and Unlock Your Learning Potential - Your One-Stop Source for Information!
© Copyright 2024 BSB Edge Private Limited.