Standard Guide for Using Fluorescence Microscopy to Quantify the Spread Area of Fixed Cells
1.1 This guide describes several measurement and technical issues involved in quantifying the spread area of fixed cells. Cell spreading and the distribution of cell spread areas of a population of cells are the result of a biological response that is dependent on intracellular signaling mechanisms and the characteristics of cell adhesion to a surface. Cell spread area is a morphological feature that can be responsive to alteration in the metabolic state or the state of stress of the cells. Changes in cell spread area can also indicate an alteration in the adhesion substrate that may be due to differences in manufacturing of the substrate material or in response to extracellular matrix secretions. High-quality measurement of cell spread area can serve as a useful metric for benchmarking and detecting changes in cell behavior under experimental conditions.
1.2 The measurement described in this guide is based on the use of microscopy imaging of fixed fluorescent cells and the use of image analysis algorithms to extract morphological data from the images. To produce robust cell spread area measurements, technical details involved in sample preparation, cell staining, microscopy imaging, image analysis, and statistical analysis should be considered. Several of these issues are discussed within this guide.
1.3 This standard is meant to serve as a guide for developing methods to reliably measure the area to which cells spread at a surface. This surface can be conventional tissue culture polystyrene or sophisticated engineered biomaterial surfaces. An example of a detailed procedure to measure the spreading area of cells on a tissue culture polystyrene surface is provided in the appendixes.
1.4 Cell morphology features such as cell spreading area and perimeter are generally reported in units of length. For example, spreading area per cell (that is, cell spread area) is likely reported in units of µm2. A spatial calibration standard is required to convert between numbers of pixels in a digital camera image to µm2 as an SI unit.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 Sodium azide is used as a antibacterial reagent in the slide mounting media. This preserves the integrity of the mounting media. The toxicity of this reagent (for example, MSDS) should be considered before use of this reagent in large scale slide mounting procedures.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Currently Viewing
Expand Your Knowledge and Unlock Your Learning Potential - Your One-Stop Source for Information!
© Copyright 2024 BSB Edge Private Limited.